Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Vet Q ; 44(1): 1-15, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38229485

ABSTRACT

As COVID-19 has shown, pandemics and outbreaks of emerging infections such as Zika, Nipah, monkeypox and antimicrobial-resistant pathogens, especially emerging zoonotic diseases, continue to occur and may even be increasing in Southeast Asia. In addition, these infections often result from environmental changes and human behaviour. Overall, public health surveillance to identify gaps in the literature and early warning signs are essential in this region. A systematic review investigated the prevalence of emerging zoonotic diseases over 11 years from 2011 to 2022 in Southeast Asia to understand the status of emerging zoonotic diseases, as well as to provide necessary actions for disease control and prevention in the region. During the 2011-2022 period, studies on pigs, poultry, ruminants, companion animals and wildlife in Southeast Asia were reviewed thoroughly to assess the quality of reporting items for inclusion in the systematic review. The review was performed on 26 studies of pigs, 6 studies of poultry, 21 studies of ruminants, 28 studies of companion animals and 25 studies of wildlife in Southeast Asia, which provide a snapshot of the prevalence of the emerging zoonotic disease across the country. The findings from the review showed that emerging zoonotic diseases were prevalent across the region and identified a few zoonotic diseases associated with poultry, mainly stemming from Cambodia and Vietnam, as high priority in Southeast Asia.Clinical relevance: Appropriate prevention and control measures should be taken to mitigate the emerging zoonotic diseases in Southeast Asia.


Subject(s)
Communicable Diseases, Emerging , Zoonoses , Animals , Humans , Animals, Wild , Asia, Southeastern/epidemiology , Poultry , Ruminants , Swine , Swine Diseases/epidemiology , Vietnam/epidemiology , Zoonoses/epidemiology , Zoonoses/prevention & control , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/prevention & control
2.
Vet Sci ; 9(6)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35737344

ABSTRACT

African swine fever (ASF) is a highly contagious disease that is caused by the ASF virus (ASFV) with a high fatality rate in domestic pigs resulting in a high socio-economic impact. The pig business in Vietnam was recently affected by ASF for the first time. This study thus aimed to develop a disease dynamic model to explain how ASFV spreads in Vietnamese pig populations and suggest a protective vaccine coverage level required to prevent future outbreaks. The outbreak data were collected from ten private small-scale farms within the first wave of ASF outbreaks in Vietnam. Three methods were used to estimate the basic reproduction number (R0), including the exponential growth method, maximum likelihood method, and attack rate method. The average R0 values were estimated at 1.49 (95%CI: 1.05-2.21), 1.58 (95%CI: 0.92-2.56), and 1.46 (95%CI: 1.38-1.57), respectively. Based on the worst-case scenario, all pigs in a herd would be infected and removed within 50 days. We suggest vaccinating at least 80% of pigs on each farm once a commercially approved ASF vaccine is available. However, an improvement in biosecurity levels in small-scale farms is still greatly encouraged to prevent the introduction of the virus.

3.
Vet Med Sci ; 8(2): 877-885, 2022 03.
Article in English | MEDLINE | ID: mdl-34953052

ABSTRACT

BACKGROUND: Miyazaki Prefecture is one of the hotspots of severe fever with thrombocytopenia syndrome (SFTS) cases and related deaths in Japan since 2013 and other pathogens of tick-borne diseases (TBDs). Japanese spotted fever and scrub typhus are also endemic in this region. OBJECTIVES: A total of 105 wild boars, hunted in 2009, were serologically examined as sentinels for TBDs to indirectly demonstrate the potential hazard of ticks transmitting pathogens to humans in the studied area. METHODS: The collected blood and spleens of the wild boars underwent serological and molecular tests for SFTSV, Rickettsia japonica (Rj) [antibody to spotted fever group rickettsiae (SFGR) were tested by using species-common antigen], and Orientia tsutsugamushi (Ot). RESULTS: Seroprevalences of SFTSV, SFGR, and Ot were 41.9%, 29.5%, and 33.3%, respectively. SFTS viral RNA was identified in 7.6% of the sera, whereas DNA of Rj or Ot was not detected in any sample. In total, 43.8% of the boars possessed an infection history with SFTSV (viral gene and/or antibody). Of these, 23.8% had multiple-infection history with SFGR and/or Ot. CONCLUSIONS: The high prevalence of SFTSV in wild boars might reflect the high risk of exposure to the virus in the studied areas. In addition, SFTSV infection was significantly correlated with Ot infection, and so were SFGR infection and Ot infection, indicating that these pathogens have common factors for infection or transmission. These data caution of the higher risk of SFTSV infection in areas with reported cases of other TBDs.


Subject(s)
Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Swine Diseases , Tick-Borne Diseases , Ticks , Animals , Japan/epidemiology , Rickettsia , Severe Fever with Thrombocytopenia Syndrome/veterinary , Sus scrofa , Swine , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/veterinary
4.
Vet World ; 15(12): 2850-2855, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36718319

ABSTRACT

Background and Aim: African swine fever (ASF) is a notifiable viral disease of pigs and wild boars that causes severe economic losses to the swine industry. The pig industry in Vietnam was recently attacked by the ASF virus (ASFV) for the first time in history. However, we lack information regarding the transmissibility of ASF within indoor production systems communities, such as those in Vietnam. Therefore, we aimed to estimate the basic reproduction number (R0) for ASF during the early stages of transmission between farms in indoor production system communities from local and national data in Vietnam. Materials and Methods: The linear regression model approach for the susceptible infectious method was used in this study to estimate the transmission rate and, consequently, the R0 value. Results: The R0 values between-farm of ASF ranged from 1.41 to 10.8 in different scenarios of infectious period duration, from 15 to 30 days at the national and local levels. Conclusion: These results help to understand the scale and speed of ASF infection in Vietnam and to provide a scientific basis to implement control measures to restrict the spread of ASFV in other locations.

5.
Vet Sci ; 8(10)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34679036

ABSTRACT

Avian Metapneumovirus (aMPV) is a causative agent of respiratory disease complex in turkeys and chickens that has recently been detected in Vietnam. Due to its novelty, this study was conducted to elucidate the distribution of aMPV in several provinces in northern Vietnam. By the application of Enzyme-Linked Immunosorbent Assay (ELISA) and nested Reverse Transcription-Polymerase Chain Reaction (RT-PCR), this study demonstrated the circulation of aMPV in 12 out of 14 cities/provinces with positive rates of 37.6% and 17.2%, respectively. All nested RT-PCR positive samples were aMPV subgroup B. By pairing the detection results with age groups, it was observed that aMPV infections occurred in chickens of all ages. Additionally, by genetic characterization, aMPV strains were demonstrated to not be attenuated vaccine viruses and to belong to at least two genetic clades. Overall, the obtained results provided insights into the prevalence of aMPV and indicated a greater complexity of respiratory diseases in chickens in Vietnam.

6.
Trop Anim Health Prod ; 52(6): 3781-3788, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33011908

ABSTRACT

Porcine epidemic diarrhea (PED) virus (PEDV) is a globally emerging and re-emerging epizootic swine virus that causes massive economic losses in the swine industry, with high mortality in piglets. In Vietnam, PED first emerged in 2009 and has now developed to an endemic stage. This is the first cross-sectional survey performed to evaluate the proportion of PEDV-positive swine farms in Vietnam from January 2018 to February 2019. Fecal samples from 327 pig farms in northern Vietnam were collected and tested for PEDV infection by reverse transcription-loop-mediated isothermal amplification (RT-LAMP) method. The proportion of PEDV-positive farms was 30.9% and PEDV-positive farms were distributed throughout the study area. The highest proportion of PEDV-positive farms was 70% (7/10) among nucleus production type farms (P < 0.05). Higher proportions of PEDV-positive farms were found in the Northeast and Red River Delta areas, which are the major areas of pig production (P < 0.05). The proportion of PEDV-positive farms was higher among larger farms (P < 0.05). Our findings illustrate the high proportion of PEDV-positive farms in the Vietnamese pig population and will help to better understand the epidemiological dynamics of PED infection, to estimate impact, and establish and improve prevention and control measures.


Subject(s)
Porcine epidemic diarrhea virus/isolation & purification , Swine Diseases/virology , Animals , Coronavirus Infections/veterinary , Cross-Sectional Studies , Diarrhea/veterinary , Epidemics , Feces/virology , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Porcine epidemic diarrhea virus/genetics , Swine , Swine Diseases/epidemiology , Vietnam/epidemiology
7.
Front Vet Sci ; 7: 433, 2020.
Article in English | MEDLINE | ID: mdl-32851018

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) causes enteritis, vomiting, watery diarrhea, and high mortality in suckling pigs, threatening the swine industry. Porcine epidemic diarrhea (PED) re-emerged globally in 2013 in many important swine-producing countries in Asia and the Americas. Several studies have identified the risk factors for the spread of PEDV in acute outbreaks. However, limited information is available on the risk factors for the transmission of PEDV in endemic regions. We hypothesized that poor biosecurity, location, and some social or cultural practices are the main risk factors for PEDV transmission in the Vietnamese pig population. The aim of this study was to evaluate the potential risk factors for the transmission of PEDV in an endemic area in Vietnam. In this case-control study, questionnaires containing 51 questions were completed for 92 PEDV-positive and 95 PEDV-negative farms. A logistic regression analysis was performed to assess the risk factors associated with PEDV infection. Province and the total number of pigs were included as random effects to determine their influence on the risk of PEDV infection. Twenty-nine variables of interest that have been associated with PEDV status were analyzed in a univariate analysis (P <0.20), with backward stepwise selection. Only three of these 29 variables in four models remained significant PEDV risk factors in the final model: farrow-to-wean production type, distance from the farm to the slaughterhouse (<1,000 m), and the presence of chickens on site (P <0.05). This is the first study to identify the main risk factors for PEDV infection in an endemic area. Our findings suggest that hygiene measures should be strictly implemented on farms for the effective control and prevention of PEDV infection.

8.
J Vet Med Sci ; 81(10): 1450-1454, 2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31378773

ABSTRACT

Bovine viral diarrhea virus (BVDV) footprint has spread across the globe and is responsible for one of the most economically important diseases in cattle. In Japan, some regional surveillance and preventive measures to control bovine viral diarrhea (BVD) have been implemented. However, BVDV infection is poorly understood in cattle industries, and there is no systematic BVD surveillance system and control program. Kyushu is the center for raising beef cattle in Japan. Therefore, this study aimed to determine the BVDV infection using a slaughterhouse survey among beef cattle in Kyushu, Japan. A total of 1,075 blood samples were collected at two regional slaughterhouses in Miyazaki prefecture from December 2015 to June 2016. Antigen ELISA was used for detection of BVDV antigen in blood samples. Two samples showed positive results (2/1,075; 0.18%). BVDV RNA was extracted from positive blood samples; the sequence was determined and analyzed by the neighbor-joining method for construction of the phylogenetic tree. Phylogenetic analysis based on the 5'-UTR revealed that the two positive samples were grouped into the same subtype BVDV-1b in the BVDV-1 genotype, but the infected cattle belonged to two different farms. In conclusion, this is the first study to identify the presence of BVDV in a slaughterhouse survey in Kyushu. These findings suggest that a slaughterhouse survey is a useful tool for developing a surveillance system for monitoring infectious diseases in cattle.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease/epidemiology , Diarrhea Virus 1, Bovine Viral , 5' Untranslated Regions/genetics , Abattoirs , Animals , Antigens, Viral/blood , Cattle , Diarrhea Virus 1, Bovine Viral/classification , Diarrhea Virus 1, Bovine Viral/genetics , Diarrhea Virus 1, Bovine Viral/immunology , Diarrhea Virus 1, Bovine Viral/isolation & purification , Japan , Phylogeny , Surveys and Questionnaires
9.
J Vet Med Sci ; 80(11): 1782-1786, 2018 Nov 23.
Article in English | MEDLINE | ID: mdl-30282841

ABSTRACT

The purpose of this study was to detect porcine epidemic diarrhea virus (PEDV) subclinically infected pigs shipped from non-case farms to slaughterhouses. Systematic sampling was conducted at two slaughterhouses. A total of 1,556 blood samples were collected from 80 case and non-case farms from pigs over 6 months old. Blood samples were centrifuged to obtain sera. Serial serum dilutions were subjected to serological examination for PEDV presence using Neutralization test (NT). The cut-off titer was set at titer of 1:2 dilution and farms with at least one positive sample in duplicate were classified as PED-positive farms. Several non-case farms (9.4%, 6/64) and 100% (16/16) of the case farms were indeed positive for PEDV. The proportion of seropositive animals from case farms was 63.7%, significantly different from that of non-case farms (4.3%, P<0.05). In both case and non-case farms, the proportion of seropositive animals in farrow-to-finish farms was significantly higher than in wean-to-finish farms (P<0.05). Seropositive animals in non-case farms were detected by NT in a sero-survey by sampling at slaughterhouses. Therefore, subclinically infected pigs should be considered prior to shipment.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Coronavirus Infections/veterinary , Porcine epidemic diarrhea virus/immunology , Swine Diseases/virology , Animals , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Japan/epidemiology , Swine , Swine Diseases/blood , Swine Diseases/epidemiology , Swine Diseases/immunology
10.
BMC Vet Res ; 14(1): 172, 2018 May 29.
Article in English | MEDLINE | ID: mdl-29843733

ABSTRACT

BACKGROUND: Porcine epidemic diarrhoea (PED) is an emerging disease in pigs that causes massive economic losses in the swine industry, with high mortality in suckling piglets. Early identification of PED virus (PEDV)-infected herd through surveillance or monitoring strategies is necessary for mass control of PED. However, a common working diagnosis system involves identifying PEDV-infected animals individually, which is a costly and time-consuming approach. Given the above information, the thrusts of this study were to develop a real-time fluorescent reverse transcription loop-mediated isothermal amplification (RtF-RT-LAMP) assay and establish a pooled testing system using faecal sample to identify PEDV-infected herd. RESULTS: In this study, we developed an accurate, rapid, cost-effective, and simple RtF- RT-LAMP assay for detecting the PEDV genome targeting M gene. The pooled testing system using the RtF-RT-LAMP assay was optimized such that a pool of at least 15 individual faecal samples could be analysed. CONCLUSIONS: The developed RtF-RT-LAMP assay in our study could support the design and implementation of large-scaled epidemiological surveys as well as active surveillance and monitoring programs for effective control of PED.


Subject(s)
Coronavirus Infections/veterinary , Nucleic Acid Amplification Techniques/veterinary , Porcine epidemic diarrhea virus , Swine Diseases/diagnosis , Animals , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Nucleic Acid Amplification Techniques/methods , Porcine epidemic diarrhea virus/genetics , Real-Time Polymerase Chain Reaction/veterinary , Sensitivity and Specificity , Swine , Swine Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...